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Abstract Gnomoniopsis castaneae is an emerging fun-
gal pathogen currently scored as the major nut rot agent
on chestnut, although it is also associated with cankers
on both chestnut and hazelnut, as well as with necrosis
on chestnut galls and leaves. Described for the first time
in 2012, G. castaneae has been reported in several
countries across Europe, Asia and Australasia, often in
relation to severe outbreaks. The goal of this review is to
provide a comprehensive summary of the state of the art
about G. castaneae, highlighting the main results
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achieved by the research and stressing the most relevant
knowledge gaps that still need to be filled. This over-
view includes topics encompassing the taxonomy of the
fungal pathogen, its host range and geographic distribu-
tion, the symptomatology and the diagnostic methods
available for its detection, its impact, biology, ecology
and epidemiology. The main interactions between
G. castaneae and other organisms are also discussed,
as well as the possible control strategies. In these past
few years, relevant progresses in the knowledge of
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G. castaneae have been achieved, yet the complexity of
the challenges that this pathogen poses to chestnut
growers and to the scientific community advocates for
further advances.

Keywords Canker- Castanea spp. - Dryocosmus
kuriphilus - Gnomoniopsis smithogilvyi - Nut rot -
Review

Introduction

The genus Castanea (hereafter referred to as chestnut)
includes 13 woody species widely distributed across
both hemispheres, as a result of their natural dispersal
and cultivation by humans (Mellano et al. 2012). De-
spite being a multipurpose tree, chestnut has been culti-
vated and spread in association with the provision of
specific goods such as edible nuts, timber and firewood
(Conedera et al. 2004; Bounous and Torello Marinoni
2005; Mellano et al. 2012). To date, most of the eco-
nomic relevance of chestnut relies on the production of
marketable nuts for human consumption, mainly deriv-
ing from the cultivation of C. sativa Mill. (European or
sweet chestnut), C. crenata Sieb. et Zucc. (Japanese
chestnut), C. mollissima Blume (Chinese chestnut),
and of their hybrids (Conedera et al. 2004; Bounous
and Torello Marinoni 2005; Mellano et al. 2012).

The production of edible fruits may be compromised
to variable extents as a consequence of abiotic stresses,
pathogens and pests, whose presence can reduce fruit
yield and quality in pre-harvest or post-harvest condi-
tions. Some of the most damaging threats of chestnut
affect tree health by significantly reducing its vitality
and by determining substantial decline, not rarely lead-
ing to death. This is the case, for instance, of the onset of
ink disease caused by the oomycetes Phytophthora
cambivora (Petri) Buisman and P. cinnamomi Rands,
of the chestnut blight epidemic due to the ascomycete
Cryphonectria parasitica (Murrill) M.E. Barr and of the
infestation of the Asian gall wasp Dryocosmus
kuriphilus Yasumatsu (Vettraino et al. 2005a; Sartor
et al. 2015; Rigling and Prospero 2018). Damages to
chestnut may be substantial or even catastrophic. For
instance, C. dentata (Marsh) Borkh. (American chest-
nut) got almost extinct by chestnut blight in the early
twentieth century in North America, where it was once
largely widespread (Russell 1987). Other pathogens
may act directly at fruit level, including many fungi
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associated with the spoilage of nuts, such as Acrospeira
mirabilis Berk. & Broome, Alternaria spp., Aspergillus
spp., Botrytis cinerea Pers., Ciboria batschiana (Zopf)
N.F., Colletotrichum acutatum J.H. Simmonds,
Coniophora puteana (Schumach.) P. Karst.,
Cryptodiaporthe castanea (Tul. & C. Tul.) Wehm.
Buchw., Cytodiplospora castanea Oudem., Discula
campestris (Pass.) Arx, Dothiorella spp., Fusarium
spp., Mucor spp., Neofusicoccum ribis (Slippers, Crous
& M.J. Wingt.) Crous, Slippers & A.J.L. Phillips, Pen-
icillium spp., Pestalotia spp., Phoma castanea Peck,
Phomopsis endogena (Speg.) Cif., Phomopsis
viterbensis Camici, Rhizopus spp., Sclerotinia
sclerotiorum (Lib.) de Bary, Trichoderma spp.,
Trichothecium roseum (Pers.) Link, and Truncatella
spp. (Hrubik and Juhasova 1970; Washington et al.
1997; Overy et al. 2003; Panagou et al. 2005; Rodrigues
et al. 2012; Visentin et al. 2012; Donis-Gonzalez et al.
2016; Gafturi et al. 2017).

Until the early 2000s, one of the fungal species most
frequently associated with the spoilage of chestnut nuts
was the black rot agent C. batschiana, a latent pathogen
that could be isolated from asymptomatic nuts, buds and
bark tissues, as well as from rotten fruits (Hrubik and
Juhasova 1970; Vettraino et al. 2005b; Blaiotta et al.
2014). In addition, Phoma spp. and Phomopsis spp. were
reported as locally relevant in association with the spoil-
age or mummification of chestnut nuts (Washington et al.
1997; Visentin et al. 2012; Maresi et al. 2013). Although
nut rots can be occasionally detrimental and challenging
for chestnut growers and industry (Shuttleworth et al.
2013), they have generally not been considered as major
threats to the cultivation of chestnut worldwide. More-
over, nut rots mostly occur as a post-harvest issue related
to the storage conditions and to insects’ infestations,
while the harvest methods do not seem to play a relevant
role on their incidence (Washington et al. 1997; Sieber
et al. 2007; Migliorini et al. 2010).

Since the mid-2000s, a steep raise in the incidence of
rotten nuts has been extensively observed by chestnut
growers in some regions of Europe and Australasia
(Smith and Agri 2008; Smith and Ogilvy 2008;
Gentile et al. 2009; Visentin et al. 2012). Spoiled kernels
displayed symptoms not completely consistent with any
common disease of chestnut fruits. In 2012, the causal
agent of these outbreaks was described as the novel
fungal species Gnomoniopsis castaneae G. Tamietti
(Visentin et al. 2012; Tamietti 2016). To date,
G. castaneae is deemed the main nut rot agent of



Eur J Plant Pathol

chestnut across vast geographic areas encompassing
three continents (Visentin et al. 2012; Shuttleworth
et al. 2012; Shuttleworth et al. 2013; Maresi et al.
2013; Dar and Rai 2015; Dennert et al. 2015; Lione
et al. 2015; Shuttleworth and Guest 2017; Vannini et al.
2017). Moreover, the same fungal species was also
reported in association with the onset of chestnut bark
cankers in Europe and Asia (Dar and Rai 2015; Pasche
et al. 2016a). Hence, G. castaneae may be currently
acknowledged as a serious emerging plant pathogen
threatening the cultivation of chestnut and challenging
researchers, policymakers and chestnut growers at a
global scale. Under such a premise, the goal of this
review is to provide a comprehensive overview of the
state of the art about G. castaneae, while highlighting
gaps, uncertainties and future perspectives.

Identity and taxonomy

Nut rots epidemics reported in Europe and Australasia
since the mid-2000s were firstly attributed to Gnomonia
pascoe species nova or to its anamorphic stage Discula
pascoe, although both binomials were not formally and
validly assigned (Smith and Agri 2008; Smith and Ogilvy
2008; Gentile et al. 2009; Shuttleworth et al. 2015). The
fungi responsible for the above epidemics were indepen-
dently and validly described in 2012 as Gromoniopsis
castaneae (“castanea”) G. Tamietti species nova
(Visentin et al. 2012) and G. smithogilvyi L.A. Shuttlew.,
E.C.Y. Liew & D.I. Guest species nova (Shuttleworth
et al. 2012), in Europe and Australasia, respectively.
Later, morphological observations, DNA sequencing
and phylogenetic analyses demonstrated the synonymy
between the two taxa (Shuttleworth et al. 2015),
G. castaneae having priority over G. smithogilvyi
(Tamietti 2016). The fungus is known in both the
teleomorphic and anamorphic stages, producing
ascomata (i.e. perithecia) and conidiomata (i.e. acervuli),
respectively (Visentin et al. 2012).

Although clearly defined as a species, some ambigu-
ities related to the taxonomy of G. castaneae still need to
be elucidated. For instance, Meyer et al. (2015) and
Ibrahim et al. (2017) listed Amphiporthe castanea (Tul.
& C. Tul.) MLE. Barr as a synonym of G. castaneae.
However, Gnomoniopsis and Amphiporthe are indicated
as clearly distinct within the Gnomoniaceae according to
the list of accepted genera of Diaporthales (Senanayake
et al. 2017). Preliminary observations suggest that

isolates of A. castanea display both morphological traits
and sequences of the internal transcribed spacers (ITS) of
ribosomal DNA identical to those of G. castaneae, al-
though the possible synonymy could be unraveled only
through more detailed analyses conducted by sequencing
and comparing conserved DNA loci between the holo-
types of the two species (T. Sieber, ETH Ziirich, Switzer-
land, pers. comm.). Furthermore, the possibility that
P, endogena and G. castaneae could be the same species
was deemed likely based on a comprehensive analysis of
the literature dealing with chestnut nut rots and on the
examination of some common morphological and
symptoms-related features (Maresi et al. 2013). If such
speculations were proven, the emergence of the nut rots
caused by G. castaneae might predate the 2000s and the
known geographic distribution of the pathogen might be
broader. However, further studies are required to confirm
or reject the above hypotheses.

Host range and geographic distribution

Gnomoniopsis castaneae has been reported on different
tree and shrub species within the families Betulaceae,
Fagaceae, Oleaceae, and Pinaceae including both culti-
vated and wild plants such as chestnut (C. sativa,
C. crenata and hybrids between the two species), hazel-
nut (Corylus avellana L.), manna ash (Fraxinus ornus
L.), holm oak (Quercus ilex L.), Turkey oak (Quercus
cerris L.), and maritime pine (Pinus pinaster Aiton)
(Table 1). It should be noted, however, that the fungus
has been also reported as a saprobe or endophyte in
addition to as a pathogen, depending on the host and
plant tissue (Table 1). For instance, fungal endophyte
communities inhabiting asymptomatic leaves of differ-
ent tree species were investigated in southern Italy by
analyzing [llumina-MiSeq generated fungal ITS1 se-
quences. The Operational Taxonomic Unit (OTU)
assigned to G. castaneae, with the online BLAST web
interface against the GenBank database, was detected in
leaves of chestnut, Turkey oak, manna ash, and mari-
time pine (Fernandez-Conradi 2017; Fernandez-
Conradi et al. 2017; Fernandez-Conradi unpublished).
This result was consistent with the record of Ibrahim
et al. (2017) reporting G. castaneae among the manna
ash foliar endophytes.

The current geographic distribution of G. castaneae
encompasses 12 countries scattered across three conti-
nents, including Europe, Asia and Australasia (Table 1).
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Chandelier et al. (2018)

Not specified

Belgium

Bark canker

Pathogen

C. sativa

P. van Rijswick, National Plant

Not specified

the Netherlands

Canker on branches and sprouts;

asymptomatic on leaves

Pathogen;

C. sativa

Protection Organization, the

Netherlands, pers. comm.
P. Gonthier, University of

endophyte

Not specified

Czech Republic

Nut rot

Pathogen

C. sativa

Torino and L. Jankovsky,
Mendel University,
Czech Republic,
unpublished

Each row reports data from publications including the hosts on which G. castaneae was detected, the trophic attitude displayed by the fungus, the presence of disease symptoms
and the country, region or state where the fungal species was found. Based on the available information, publications predating the first description of the species in 2012 are
included when probably referring to G. castaneae or to its synonym G. smithogilvyi under a different or incomplete specific epithet. Rows are ranked based on the associated

reference, using the chronological order per year and the alphabetical order within year. Acronyms next to the region/state indicate their associated country (AU - Australia, CH -

Switzerland, FR - France, IT - Italy, NZ - New Zealand). If molecular analyses were conducted on strains already mentioned in, or clearly referable to other publications, the

strains origin was omitted in the Country and Region/State columns

However, only some of the regions where the potential
hosts of G. castaneae are widely distributed have been
thoroughly surveyed. Despite different interpretations
having been proposed to explain the current distribution
and the possible intra- and inter-continental spread of
G. castaneae (Pasche et al. 2016a; Seddaiu et al. 2017,
Sillo et al. 2017), the origin of the fungus is still unknown.

Symptomatology and diagnosis

G. castaneae has been reported to cause symptoms
including nut rot on chestnut, bark cankers on chestnut
and hazelnut, and necrosis on chestnut leaves and galls.
The association between the fungus and the symptoms
on the different hosts has been repeatedly confirmed
through the fulfillment of Koch’s postulates.

The nut rot of chestnut caused by G. castaneae dis-
plays the typical color alteration and texture degradation
characterizing brown rots, although in some cases the
kernel may appear as chalky and dehydrated (Visentin
etal. 2012; Maresi et al. 2013; Shuttleworth et al. 2013).
Iconographic tables showing the main symptoms on
nuts are available (Smith and Agri 2008; Gentile et al.
2009; Shuttleworth et al. 2012; Visentin et al. 2012;
Maresi et al. 2013; Shuttleworth and Guest 2017). How-
ever, nut rot symptoms are visible only once the fruit has
been excised and the kernel exposed. In addition, de-
pending on the progression of the disease, the confusion
with diseases caused by other fungal pathogens such as
P. endogena or molds cannot be ruled out. Further
complexity is added by the fact that G. castaneae can
also live as an endophyte within asymptomatic nuts,
hence hampering the visual detection of the disease
(Dennert et al. 2015; Ruocco et al. 2016). For instance,
Dennert et al. (2015) reported a substantial underesti-
mation of the incidence of G. castaneae (about 30%)
when the diagnosis was based on the mere visual in-
spection rather than on isolation.

Bark cankers caused by G. castaneae on young
chestnut branches and scions are morphologically sim-
ilar to those caused by the chestnut blight pathogen
C. parasitica, hence the impact of G. castaneae as a
canker agent may be difficult to appraise in the field
(Pasche et al. 2016a). Not surprisingly, in most cases the
presence of G. castaneae in association with cankers
emerged almost accidentally during regular surveys
targeting C. parasitica (Dar and Rai 2015; Pasche
et al. 2016a; Lewis et al. 2017; Trapiello et al. 2017).
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Nonetheless, a careful examination focused on the color
and morphology of conidiomata, stromata and tendrils
might provide clues to detect G. castaneae (Pasche et al.
2016a). It is still unknown if G. castaneae might trigger
the onset of cankers as severe as those caused by
C. parasitica on elder branches and trunks of chestnut
in field conditions. However, preliminary results from
inoculation trials conducted on 2-year-old chestnut
plants showed that isolates of G. castaneae were three-
fold less aggressive than a virulent C. parasitica isolate
(C. Robin, unpublished). G. castaneae was also ob-
served in association with cankers on hazelnut, although
in this case the fungus was described as a weak patho-
gen (Linaldeddu et al. 2016). In fact, pathogenicity tests
pointed out that G. castaneae could qualitatively repro-
duce cankers on hazelnut, but their severity did not
attain values significantly higher than those displayed
by untreated controls (Linaldeddu et al. 2016).

A series of reports have shown the causal relation
between G. castaneae colonization and the appearance
of necrosis on chestnut leaves and galls, the latter in-
duced by D. kuriphilus, an alien pest to Europe (Magro
et al. 2010; Vinale et al. 2014; Seddaiu et al. 2017;
Vannini et al. 2017). Recent findings pointed out that
some secondary metabolites produced by strains of
G. castaneae, namely the abscisic acid (ABA) and the
1'4'-trans-diol ABA, display phytotoxic effects on
chestnut leaves and could be involved in galls necrosis
(Vinale et al. 2014). However, the onset of necrosis on
D. kuriphilus galls is also associated with other fungi,
including Fusarium incarnatum-equiseti species com-
plex (FIESC), Alternaria alternata (Fr.) Keissl., and
Botrytis sp. (Addario and Turchetti 2011).

Regardless of the disease type, the most reliable
diagnostic methods for G. castaneae rely on field sam-
plings, followed by isolation on substrates such as MEA
(Malt Extract Agar), MYA (Malt Yeast Agar) and PDA
(Potato Dextrose Agar), and subsequent identification of
isolates through morphometric and/or biomolecular as-
says (Shuttleworth et al. 2012; Visentin et al. 2012).
Macro- and micromorphology of perithecia and asco-
spores or acervuli and conidia have been extensively
described (Shuttleworth et al. 2012; Visentin et al.
2012). Some observations can be performed directly in
planta, possibly after incubation of infected host tissues
in a damp chamber (Vannini et al. 2017), while others
need to be conducted in vitro. Nonetheless, the correct
identification of G. castaneae might not be successfully
accomplished through the mere morphological

characterization of the fungal isolates, since colonies
of other fungi inhabiting the same hosts can display
similar morphological traits, as remarked by Meyer
et al. (2017) for isolates of Sirococcus castaneae comb.
nov. J.B. Meyer & B. Senn-Irlet & T.N. Sieber (syn.
Diplodina castaneae Prill. & Delacr.), just to cite an
example. A taxon-specific molecular assay was de-
signed, tested and validated for the identification of
G. castaneae through a Polymerase Chain Reaction
(PCR) based on a set of specific primers (Lione et al.
2015). Alternatively, the identification of the fungus
may be achieved by a multilocus phylogenetic analysis
of the internal transcribed spacers (ITS) of ribosomal
DNA, the translation elongation factor 1-alpha
(TEF1-x) and the (3-tubulin genes (Visentin et al.
2012; Linaldeddu et al. 2016; Pasche et al. 2016a).

Impact

Nut rot caused by G. castaneae may occur both pre-
harvest and post-harvest, affecting nuts still on the tree,
laying on the ground or stored prior to be marketed or
processed. The incidence of G. castaneae on nuts has
been reported to vary in space and time, but it is often
associated with substantial yield losses. For instance,
peaks of incidence between 71.4 and 93.5% were
reported in chestnut orchards in north-western Italy
(Visentin et al. 2012; Lione et al. 2015; Lione and
Gonthier 2016), a peak of 49% was reported in north-
castern Italy (Maresi et al. 2013), and levels as high as
72 and 91% were observed in Australasia and Swit-
zerland, respectively (Shuttleworth et al. 2013;
Dennert et al. 2015). Not surprisingly, G. castaneae
is currently acknowledged as a major threat affecting
chestnut nuts (Shuttleworth et al. 2013; Dennert et al.
2015). The incidence of cankers caused by
G. castaneae may be locally relevant as well. As an
example, Dar and Rai (2015) reported an average
incidence of G. castaneae attaining 39% in symptom-
atic branches. While data about the frequency of the
pathogen and the severity of symptoms on leaves are
scanty, more throughout investigations have been car-
ried out on galls induced by D. kuriphilus. Here,
incidences of G. castaneae as high as 53.8%, 68%,
and over 80% were recorded in Switzerland, Sardinia
and central Italy, respectively (Meyer et al. 2015;
Seddaiu et al. 2017; Vannini et al. 2017).
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Biology

G. castaneae is an ascomycete whose mycelium can
colonize different host tissues (Table 1). The fungus has
been identified as a minor component of the endophytic
community of manna ash (Ibrahim et al. 2017), while it
has been extensively reported as the main, or among the
major endophytes of chestnut (Visentin et al. 2012), with
isolation frequencies varying depending on the tissue,
year and geographic location but as high as 70% in
Europe and 80% in Australasia (Maresi et al. 2013;
Pasche et al. 2016a; Shuttlewort and Guest 2017). The
fungus has the ability to move from cell to cell within
parenchymatic tissues, medullar rays and the vascular
network (Pasche et al. 2016a). Both the teleomorphic
and anamorphic stages of G. castaneae have been ob-
served and described in chestnut (e.g. Shuttleworth et al.
2012; Visentin et al. 2012; Pasche et al. 2016a). Although
ascomata can develop both on rotten nuts and burrs
(Visentin et al. 2012), the latter may represent the main
substrate for perithecia formation and subsequent release
of infectious ascospores (Shuttleworth and Guest 2017).
While ascospores can be produced all the day long, their
release shows peaks approximately at sunrise and sunset
(Shuttleworth and Guest 2017). In the field, the anamor-
phic stage of G. castaneae has been observed on the galls
of D. kuriphilus (Maresi et al. 2013) and on bark cankers
(Pasche et al. 2016a), while on nuts conidiomata have
been detected only after incubation into damp chambers
(Vannini et al. 2017). Hence, it was suggested that the
anamorphic stage of the fungus could be rather frequent
in the field too, provided that long-lasting conditions of
high relative humidity are met (Vannini et al. 2017).
However, based on the outcomes of a population genetics
study conducted in Europe, the high genetic differentia-
tion within populations along with the absence of signif-
icant linkage disequilibrium pointed to a prevailing role
of sexual reproduction in G. castaneae (Sillo et al. 2017).
Hence, in the long term, G. castaneae could be a high-
risk pathogen at global level since it is likely to be
endowed with a remarkable evolutionary potential fos-
tered by the prevailing sexual reproduction (McDonald
and Linde 2002; Sillo et al. 2017). Clonal spread through
dissemination of conidia may also be relevant at the local
scale, especially in association with site-specific factors
(Sillo et al. 2017). For instance, conidiomata of
G. castaneae developing on galls of D. kuriphilus might
release conidial loads promoting the clonal spread of the
fungus (Maresi et al. 2013; Vannini et al. 2017).
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Interestingly, conidiomata have not been extensively ob-
served in Australia (Shuttleworth and Guest 2017), where
D. kuriphilus is still absent (Csoka et al. 2017). Experi-
mental evidence showed that conidia infect flowers at
blossoming time and the same is likely for ascospores
(Visentin et al. 2012; Shuttleworth and Guest 2017).
Based on the outcomes of isolation trials and spore
trapping assays, an attempt of description of the infec-
tion process of G. castaneae on chestnut nuts was
published (Shuttleworth and Guest 2017). Depending
on the inoculum pressure and chestnut flowering time,
ascospores released from perithecia harbored on burrs
should be responsible of primary infections, while
conidial loads should determine secondary infections
on flowers, leaves and branches (Shuttleworth and
Guest 2017). Wind, insects and rain should play a
key role as carriers of infectious airborne inoculum,
i.e. both ascospores and conidia (EPPO 2017;
Shuttleworth and Guest 2017). Although intriguing
and consistent with some previous speculations
(Smith and Agri 2008; Smith and Ogilvy 2008;
Gentile et al. 2009; Shuttleworth et al. 2013), as well
as with experimental results showing the likelihood of
conidial infections through the floral pathway (Visentin
et al. 2012), this model of infection and disease spread
would probably need further confirmations. For in-
stance, to date, neither observational nor experimental
evidence support the possibility that insects or other
arthropods could act as vectors of G. castaneae. Al-
though this eventuality cannot be ruled out, extensive
isolation trials from D. kuriphilus, which is recognized
as a major pest of chestnut, failed to detect viable
inoculum of G. castaneae on adults, even when these
insects emerged from galls colonized by the fungus
(Lione et al. 2016). Vehiculation by pollen has also
been hypothesized, although ad hoc experiments are
still lacking (Shuttleworth and Guest 2017). Nonethe-
less, when appraising the risk associated with
G. castaneae at global or local scale (EPPO 2017),
the precautionary principle suggests to account for
potential biotic interactions until they are not ruled
out by dedicated studies. There is no information on
the pathways of infection leading to cankers and to
leaves and gall necrosis, although in this last case it
was suggested that necrosis may occur on galls follow-
ing endophytic colonization rather than from an exter-
nal source of inoculum (Vannini et al. 2017). In addi-
tion, while the fungus has been often defined as a
latent pathogen, the mechanisms underlying the
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hypothesized switch from the endophytic to the patho-
genic phase are still largely unknown (Maresi et al.
2013; Lione et al. 2016; Pasche et al. 2016a, b;
Shuttleworth and Guest 2017; Vannini et al. 2017).

The first evidence of intraspecific genetic differenti-
ation within G. castaneae was detected by Dennert et al.
(2015) in Switzerland. Based on the analysis of
concatenated B-tubulin and calmodulin sequences, sev-
eral haplotypes could be identified coexisting in the
same trees at each sampling site (Dennert et al. 2015).
This was also observed by Pasche et al. (2016a). A
population genetics study conducted across a wider
geographic area including southern Switzerland, north-
western Italy and south-eastern France showed that two
distinct subpopulations of G. castaneae could be iden-
tified combining simple sequence repeat (SSR) with
high resolution melting (HRM) analyses (Sillo et al.
2017). Based on data of allelic diversity, it was specu-
lated that either both subpopulations, or at least one,
could have been introduced to Europe (Sillo et al. 2017).
In such a scenario and in agreement with the hypothesis
proposed by Pasche et al. (2016a), north-western Italy
could have represented the area of first introduction
(Sillo et al. 2017).

Ecology and epidemiology

The influence of abiotic factors on the epidemics of nut
rot of chestnut caused by G. castaneae has been par-
tially investigated, with emphasis on climatic variables.
By combining isolation trials and molecular diagnostic
assays with statistical and geostatistical approaches,
Lione et al. (2015) suggested that the incidence of
G. castaneae at orchard level could be related to site-
dependent factors exerting their influence at a scale of
few kilometres (approximately 7.5-15.5). Further anal-
yses revealed that the average mean, maximum and
minimum temperatures of the months preceding nut
harvesting (from January to October) were significant-
ly correlated to the nut rot incidence at harvesting in
north-western Italy (Lione et al. 2015). Based on dif-
ferent combinations of such temperatures, a series of
predictive models (GroMods) assessing the incidence
of G. castaneae at site level was fitted and validated
(Lione et al. 2015). In silico simulations carried out
with GnoMods suggested that an overall increase of
the average temperatures would likely trigger a raise of
the nut rot incidence (Lione et al. 2015). The role of

temperature as a key driver boosting disease incidence
is in agreement with the findings reported by Maresi
et al. (2013) and Vannini et al. (2017). The former
suggested that warm temperatures and drought might
be related to an exacerbation of nut rot in sites infested
by G. castaneae in northern Italy. The latter showed
that, in central Italy, the frequency of galls necrosis
associated with G. castaneae increased exponentially,
with a steep raise in the early summer to July, which
was the warmest month reported during the timeframe
of the study.

Field observations led to the hypothesis that rainfall
could trigger the incidence of the nut rot by raising the
airborne inoculum of G. castaneae at blossoming time,
hence fostering floral infection by ascospores (Smith
and Agri 2008; Smith and Ogilvy 2008; Gentile et al.
2009). In Australia, isolation trials from chestnut
flowers pointed out that a higher frequency of isolation
of G. castaneae corresponded to a subsequent higher
incidence of nut rot (Shuttleworth and Guest 2017). This
finding confirmed previous results (Shuttleworth et al.
2013), showing through the fitting of a linear model that
rainfall during chestnut blossoming in December was
significantly associated with the incidence of nut rot,
despite the correlation between the two variables being
mild. Maresi et al. (2013) suggested that also drought
might foster the incidence of nut rot. Nonetheless, in-
vestigations focused on other ecological factors might
help in clarifying the drivers of G. castaneae outbreaks
(Shuttleworth et al. 2013; Lione et al. 2015).

A study conducted in Italy with the aid of the newly
developed Mean Distance Tests (MDT) showed that
different chestnut patches displayed the same random-
ized spatial pattern of infection by G. castaneae regard-
less of their plantation density, suggesting that long-
distance transmission of G. castaneae could be more
likely than short-distance transmission (Lione and
Gonthier 2016), which is also supported by the spatial
distribution of the disease observed by Vannini et al.
(2017). In addition, the hypothesis of a large-scale
spread is consistent with findings showing that the same
haplotype of G. castaneae can be present in chestnut
stands separated by distances of many kilometers
(Dennert et al. 2015; Sillo et al. 2017).

High temperatures and relative humidity have been
suggested to boost synergistically the development of
bark cankers (Pasche et al. 2016a), whereas the occur-
rence of galls necrosis might be mainly influenced by
temperatures, since the same exponential development
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of the symptoms was observed notwithstanding the
different rainfall patterns (Vannini et al. 2017).

The epidemiology of G. castaneae could be even
more complex than hypothesized so far because of its
status of latent or weak pathogen and endophyte on
different hosts, some of which share common habitats
and an overlapping geographic distribution with chestnut
(Linaldeddu et al. 2016). The possibility that such hosts
may serve to transmit the fungus has been suggested. For
instance, the presence of hazelnut may have favored the
establishment of G. castaneae on chestnut in Sardinia,
despite the reverse process being equally likely (Seddaiu
et al. 2017). Detecting the presence of transmissive hosts
and unraveling their epidemiological role might be piv-
otal to clarify and predict the spread of the pathogen
(Garbelotto et al. 2017). It is worth noting that infection
processes, ecology and epidemiology of G. castaneae are
likely to be variable within and among different biogeo-
graphical frames (Lione et al. 2015) depending on hosts
presence and distribution, climate, effects of biotic inter-
actions and availability of natural substrates for endophyt-
ic/saprobic/pathogenic colonization and for the develop-
ment of the teleomorphic and anamorphic stages. An-
thropic activities could also favor the spread of
G. castaneae at the local or global scale through the
movement of plants for planting/grafting and plant com-
modities (Pasche et al. 2016a; EPPO 2017), although
these pathways deserve to be extensively investigated.

Biotic interactions

Interspecific interactions may drive the dynamics of plant
diseases by influencing the outcomes of epidemics, espe-
cially when native hosts and plant microbiomes are chal-
lenged with alien or emerging threats, including insect
pests and plant pathogenic fungi (Quacchia et al. 2008;
Sillo et al. 2015; Garbelotto et al. 2017; Zampieri et al.
2017). The spatial and temporal overlapping between the
outbreak of G. castaneae and the invasion by the alien
pest D. kuriphilus in Europe (Brussino et al. 2002;
Visentin et al. 2012) has triggered the research on the
possible interactions between the two species. While it
can be excluded that D. kuriphilus may act as a vector of
viable inoculum of G. castaneae (Lione et al. 2016), a
series of experiments revealed that G. castaneae can
colonize chestnut buds asymptomatically before the pest
oviposition, and independently from this latter (Lione
et al. 2016), although the colonization process still need
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to be further investigated. Nonetheless, the incubation
under controlled conditions of chestnut galls collected
in the field showed that the number of emerging adults
of D. kuriphilus was significantly higher in galls colo-
nized by G. castaneae than in those not colonized, sug-
gesting a possible synergy between the pathogen and the
pest (Lione et al. 2016). Such synergistic interaction is in
agreement with the observation that the sites more se-
verely infested by D. kuriphilus tend to display higher
levels of nut rot incidence caused by G. castaneae, prob-
ably in relation to an increased availability to the fungus
of a natural substrate (i.e. galls) for the production of
conidia (Maresi et al. 2013; Vannini et al. 2017). Interest-
ingly, studies conducted on the endophytic communities
in green galls induced by D. kuriphilus and in the asso-
ciated surrounding leaf tissues pointed out that OTU
richness and diversity were lower in galls, with a signif-
icantly different composition between chestnut galls and
surrounding leaf tissues. Remarkably, the G. castaneae
OTU was found in all sampled galls (84 samples, with a
mean relative abundance equal to 0.73) and in 84% of the
associated leaf samples (mean abundance 0.54). Results
from this study suggest that D. kuriphilus act as an
ecological filter selecting particular endophytic species,
as G. castaneae, from a pool of species initially present in
plant buds or galls (Fernandez-Conradi 2017; Fernandez-
Conradi et al. 2017; Fernandez-Conradi unpublished).
Some studies documented the co-occurrence be-
tween the onset of galls necrosis and mortality of
D. kuriphilus individuals inhabiting galls (Magro
et al. 2010; Vannini et al. 2017), hence suggesting
antagonism in a broad sense between the fungus and
the pest. The adverse effect exerted by G. castaneae
against D. kuriphilus was not ascribed to a direct
entomopathogenic activity of the fungus, but rather
to an increased compactness and toughness of necrot-
ic galls through dehydration preventing the emer-
gence of the adults which remain trapped inside
(Vannini et al. 2017). However, no detrimental ef-
fects of galls necrosis on the vitality and emergence
of D. kuriphilus resulted from the experimental trials
carried out by Seddaiu et al. (2017). Noteworthy, in
addition to G. castaneae, several other fungal species
have been isolated from necrotic galls, some poten-
tially playing a role in the frame of this complex
interspecific interaction (Vannini et al. 2017). More-
over, Vannini et al. (2017) reported that the frequency
of G. castaneae did not display significant and/or
substantial differences between asymptomatic and
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symptomatic galls, thus adding further complexity to
the interpretation of the interspecific interaction be-
tween the fungus and the pest. The previously docu-
mented mechanisms of synergy or antagonism be-
tween the fungus and the insect pest (Lione et al.
2016; Seddaiu et al. 2017; Vannini et al. 2017) would
need further experimental support.

While testing the interaction between the chestnut blight
pathogen C. parasitica and D. kuriphilus in Switzerland,
the fungal community of galls abandoned by the pest was
investigated, revealing that G. castaneae was prevalent
(Meyer et al. 2015). In addition to G. castaneae, a second,
much rarer species firstly attributed to the genus
Gnomoniopsis (Meyer et al. 2015), but later referred to
as S. castaneae (Meyer et al. 2017), was isolated. Interest-
ingly, the abundance of both G. castaneae and
S. castaneae taken together was negatively and significant-
ly correlated to the abundance of C. parasitica in aban-
doned galls (Meyer et al. 2015). The above findings sug-
gest that G. castaneae might have a competitive advantage
over C. parasitica as endophytic colonizer of galls, hence
potentially limiting the amount of infectious inoculum that
could be produced by the chestnut blight pathogen on that
substrate (Meyer et al. 2015). On the other side, a lower
abundance of G. castaneae was found on older galls,
suggesting that fungi with better saprotrophic ability, in-
cluding C. parasitica, might outcompete it. In any case, the
use of G. castaneae as a biocontrol agent against other
pathogens or pests of chestnut is unfeasible and not rec-
ommended due to its pathogenic side effects on the same
host (Vannini et al. 2017).

Control strategies

Studies focused on testing if the management practices
could influence the incidence of spoiling fungi are no-
tably few for chestnut (Sieber et al. 2007). Screening
and testing host varieties or cultivars either resistant, or
at least more tolerant to G. castaneae might help in
preventing the disease in new plantations. In this per-
spective, a first attempt was carried out in Australia with
some among the most important chestnut varieties cul-
tivated in that region for nut production (Shuttleworth
et al. 2013; Shuttleworth and Guest 2017). Despite each
being susceptible to G. castaneae, differences in the
severity of symptoms were detected depending on the
biogeographical origin of the fungal strains used for the
pathogenicity tests (Shuttleworth and Guest 2017). In

Europe, preliminary results from a survey conducted
within a varietal collection field suggested that the sus-
ceptibility profiles to nut rot caused by G. castaneae are
comparable between the C. sativa wild-type and some
chestnut cultivars of local or global relevance (Lione
2016). However, further analyses are needed before
drawing definitive conclusions.

The lack of association between the plantation den-
sity and the spatial pattern of nut rot caused by
G. castaneae suggests that the attempt of controlling
this pathogen by fine-tuning the orchard plantation den-
sity is likely to fail (Lione and Gonthier 2016). Con-
versely, considering the prevalence of sexual reproduc-
tion in G. castaneae (Sillo et al. 2017), an effective
strategy could be represented by the removal of the
fallen burrs on which the teleomorph stage develops
(Visentin et al. 2012; Shuttleworth et al. 2013;
Shuttleworth and Guest 2017; Sillo et al. 2017). How-
ever, this and other similar practices proposed in the
literature (Shuttleworth et al. 2013) to prevent asco-
spores release might not lead to the expected outcomes
because of the potential long-distance dispersal of the
pathogen and of the local relevance of asexual repro-
duction (Sillo et al. 2017). Nonetheless, specific trials
are needed to test which management options could be
effective to control G. castaneae in the field.

Nut rot incidence may considerably increase during
the post-harvest storage (Maresi et al. 2013;
Shuttleworth et al. 2013; Dennert et al. 2015). The first
attempt to test a post-harvest control strategy to reduce
the incidence of the disease on chestnut nuts was report-
ed in Ruocco et al. (2016). In this study, a traditional
method based on the thermic treatment of nuts in water
(i.e. “curatura”) was customized by adding to the water
a cell-wall degrading enzyme mixture gathered from
cultures of the fungus Trichoderma harzianum Rifai
strain T22. The improved treatment resulted in a signif-
icant reduction of nut rot incidence, whose main agent
had been previously detected as G. castaneae (Ruocco
et al. 2016), hence providing new and intriguing per-
spectives to reduce the post-harvest losses caused by the
pathogen.

The efficacy of biological control against G. castaneae
was explored also in relation to its endophytic presence in
grafting scions of chestnut (Pasche et al. 2016b). A series
of observations led to the hypothesis that the bacterium
Bacillus amyloliquefaciens (Fukumoto) Priest et al. and
the fungus Trichoderma atroviride P. Karst. could act as
antagonists against G. castaneae (Pasche et al. 2016b).
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By treating chestnut scions with inoculum suspensions of
either B. amyloliquefaciens or T. atroviride prior to
grafting, it was observed that G. castaneae was absent
where such species colonized endophytically the woody
tissues (Pasche et al. 2016b). Bark canker symptoms
associated with G. castaneae were also slowed in their
progression on treated plants (Pasche et al. 2016b). Con-
sequently, the authors hypothesized that both
B. amyloliquefaciens and T. atroviride could prevent or
inhibit the development of G. castaneae, suggesting that
preventive inoculations of these antagonistic endophytes
could be effective in the biocontrol of the fungal pathogen
(Pasche et al. 2016b).

Conclusions and perspectives

The current state of knowledge points out that
G. castaneae is an emerging pathogen posing a major
threat to chestnut cultivation worldwide. The nut rots
and cankers associated with G. castaneae are likely to
determine relevant losses in orchard and coppices chal-
lenging chestnut growers, foresters, researchers and
policymakers. In spite of the remarkable progress
achieved by the scientific research in the last years, there
is a need to push the knowledge about G. castaneae far
beyond its current status, especially with the aim of
designing effective control strategies.

The endophytic presence of G. castaneae within
asymptomatic plant tissues, as well as the difficulties in
the diagnosis of the pathogen in symptomatic plants, might
have led to a substantial underestimation of both its host
range and geographic distribution. However, a full screen-
ing seeking for other potential host species might be
difficult to implement on the large scale. On the contrary,
extensive surveys targeting G. castaneae on its main
confirmed hosts could be profitably carried out across
regions where these species are abundant and play a key
economic, social and environmental role. For instance, no
records of G. castaneae are available for some countries
accounting for the most relevant chestnut nuts production
worldwide, including China, the Korean peninsula, Japan,
Turkey and Portugal (Bounous and Torello Marinoni
2005). Similarly, surveillance for G. castaneae might be
important also in countries where chestnut has been re-
cently introduced or reintroduced, such as USA, just to cite
an example (Gold et al. 2006). In addition, investigations
focused on hazelnut could unravel whether G. castaneae is
a canker-related pathogen associated with mild symptoms
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on this host only at local level (i.e. Sardinia) (Linaldeddu
etal. 2016), or if it could represent an emerging risk at the
global scale.

The effectiveness of extensive surveys mostly depends
on the availability of diagnostic techniques able to pro-
vide a reliable and reproducible outcome combining ac-
curacy, versatility and technical/economical sustainabili-
ty. As previously mentioned, only laboratory analyses
and molecular-based approaches can satisfy the majority
of the above requirements in the case of G. castaneae.
Nonetheless, innovative diagnostic methods could be
designed, customized and implemented for rapid in-
field applications. For instance, Loop-mediated isother-
mal AMPIlification of DNA (LAMP) assays (Notomi
et al. 2000) might provide an intriguing perspective, as
recently shown in studies focused on the diagnosis of
emerging and invasive plant pathogens (Tomlinson et al.
2010; Sillo et al. 2018). LAMP-based tools might also
help in preventing the circulation of plant commodities or
other putative carriers of G. castaneae in non-infested
areas, allowing for the timely detection of the pathogen
even in the absence of symptoms and without the need of
the fungal isolation step.

A phylogeographic investigation with the ultimate
goal of clarifying the possible origin of the pathogen
as well as its most likely transmission pathways would
provide helpful insights. The intensive trade of plants
for planting, wood, fruits and transformed products
might foster the spread of the pathogen unless its carriers
are identified and their epidemiological role elucidated.
In spite of the considerable efforts devoted to investigate
the biology, reproduction strategy, population structure,
ecology and epidemiology of G. castaneae, relevant
knowledge gaps still need to be filled. Such gaps in-
clude, but are not limited to, the detection of the possible
vectors of the pathogen, the characterization of its spore
deposition patterns at seasonal level, the identification
of the mechanism allowing for its penetration within the
different hosts tissues, the elucidation of the epidemio-
logical role played by asymptomatic hosts/host tissues,
the clarification of the factors triggering the switch from
the endophytic to the pathogenic stage and their relation
to the onset of nut rots, cankers and necrosis of green
tissues. Moreover, the possibility that the level of path-
ogenicity of G. castaneae could be strain-dependent is
worth of being fully explored.

The interpretation and prediction of disease out-
breaks caused by G. castaneae could be substantially
improved through the clarification of its interaction with
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other organisms potentially exerting a synergistic or
antagonistic effect, possibly meditated by varying envi-
ronmental conditions. While some biotic interactions
with D. kuriphilus (Lione et al. 2016; Seddaiu et al.
2017; Vannini et al. 2017) and C. parasitica (Meyer
et al. 2017) have been investigated, no information is
available about the possible interactions of the fungus
with other arthropods or relevant chestnut pathogens
affecting either nuts (e.g. C. batschiana), leaves [e.g.
Mycosphaerella maculiformis (Pers.) J. Schrot], cambial
or woody tissues (e.g. Phytophthora spp.). In addition,
while in the case of C. parasitica the antagonism with
G. castaneae is consistently supported by the available
lines of evidence, at least at gall level (Meyer et al.
2015), for D. kuriphilus the results reported in the liter-
ature are partially discordant in defining possible syner-
gistic or antagonistic interactions, hence requiring fur-
ther investigations.

Another relevant aspect still largely unexplored is
related to the susceptibility profiles of different chestnut
cultivars to G. castaneae. A rank of differential suscep-
tibilities supported by experimental trials and statistical
evidence could provide the chestnut growers with help-
ful criteria to select the propagating material for new
plantations. Under the same practical perspective, com-
paring the effects of different management practices on
the incidence of G. castaneae might help in designing
effective control strategies both in orchards and in cop-
pices. In addition, control strategies could be profitably
improved by testing both traditional methods, such as
the application of fungicides, manures or other
chemicals, and more sustainable approaches based on
biological control, including the promising treatments
with B. amyloliquefaciens and T. atroviride (Pasche
et al. 2016b). In post-harvest, the use of bioproducts
aimed at inhibiting pests and diseases has provided
interesting results in controlling G. castaneae in chest-
nut nuts (Ruocco et al. 2016), thus offering new out-
looks that are worth exploring to customize different
nuts treatments based on hydrotherapy, thermotherapy,
refrigeration in normal or controlled atmosphere, expo-
sition to carbon dioxide (CO,) fluxes, freezing and
drying (Bounous and Torello Marinoni 2005). Finally,
control treatments should also be tested in relation to
potential mycotoxins contamination. In fact, despite the
mycotoxigenic potential of G. castaneae is unknown, it
cannot be excluded, as other mycotoxin-producing fun-
gi have been isolated from chestnut nuts and derived
products (Prencipe et al. 2018).
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